

#### Moscow, september 28-29

Russian Supercomputing Days is the first united international supercomputing conference carried on the best traditions of Russian and international supercomputing events.



# Overview of Tianhe2 System and Application

Yutong Lu Professor

School of computer science, NUDT & State Key Laboratory of High Performance Computing, China





- **NUDT HPC Background**
- □ Design and APP of Tianhe2 System
- **□**Prospect of Tianhe-2A
- **□Summary**



























#### **Overview**



National university of defense technology



~2,000 Teachers ~15,000 Students

... Others





#### **Overview**



#### Supercomputers in NUDT, Changsha, China







#### **Overview**



#### **Supercomputing Centers in China**





NSCC-Guangzhou,2013 Tianhe-2



NSCC-Changsha,2012 Tianhe-1A



NSCC-Tianjin,2010 Tianhe-1A



NSCC-Wuxi Shenwei-NG



NSCC-Jinan,2012 Shenwei-Bluelight



NSCC-Shenzhen,2011 Dawning-6000







#### Challenges(PSPRD)

- > Performance
- ➤ Scalability
- Power consumption
- > Reliability
- ▶ big Data

#### Heterogeneous Trend

- > Some of top-level supercomputers
- ➤ Tianhe-1/2, Titan ...

#### Compute Efficiency

- More computations per transistor
- > More computations per joule













## **Highlights of Tianhe-2**





Hybrid Hierarchy shared storage System
12.4PB

## **Highlights of Tianhe-2**



#### **□**Software Stack

Scientific Data **HPC** Application **Cloud Computing** Visualization Intelligent Monitor & System Management **Platform** Service Platform PAE System Multi-Domain Framework GA MPI **OpenMC** Tools & Library **PDE** C/C++/Fortr OpenMP Intel Offload an Hybrid Runtime System Resource Management System H<sup>2</sup>FS Parallel File System **PSE Kylin Operating System** 





#### **TH-Express 2+**

- Network Interface Chip (NIC)
  - > Bandwidth
    - ◆ 14Gbps x 8lane
    - ◆ 12GB/s
  - > Function extension
    - Low latency and high rate operations
    - ◆ Collective comm offload
    - Parallel processing using Multiple DMA engines
    - Enhanced reliability

Extending to >100PFlops system

- □ Network Router Chip (NRC)
  - > 24 ports
    - Up to 5.376 Tb/s of switching capacity
  - > Table-based routing
    - Multi-path adaptive routing
    - Oblivious routing







#### Scalable MPI



#### Message passing system based on TH-Express

- Multiple Communication Protocols
  - > Performance oriented
  - > Scalability oriented
  - Combine application model
  - Zero-copy data transfer
- Collective Operation Offload
  - Construct topology-aware algorithm tree dynamically
  - Message pass automatically based on the trigger of NIC
  - Bypass effect of OS noise, Reduce Latency of large scale









#### Scalable MPI



- Non-stop and fault Resilient MPI (NR-MPI)
  - > Application continue execution without being relaunched
  - > Failure detection and MPI state recovery done by runtime
  - Data-backup by application-level diskless C/R
  - > Reconstruct of MPI communicator and channel









### **Domain Specific Framework**



- ☐ Hide parallel programming complexity using millions of cores and the hierarchy of parallel computers
- Integrates the efficient implementations of parallel fast algorithms
- Provides efficient data structures and solver libraries
- Supports software engineering for code extensibility







#### Scalable IO Structure



#### □IO Architecture on Tianhe-2

- ➤ Multiple Layers & Hybrid Storages
  - ◆ Local Disk
  - PCI-E SSD
  - Disk Array
- ► 6400 local Disks
  - ◆Bus attached
- >256 IO nodes
  - Burst: above 1TB/s
  - ◆ TH-Express and IB QDR port
- ▶ 64 Storage Servers
  - ◆Sustained: about 100GB/s







#### **Scalable IO Structure**



#### ☐ H<sup>2</sup>FS: Hybrid Hierarchy File System

- > DPU, A fundamental unit for data processing, tightly couples a compute node with its local storage
- > HVN, Hybrid, Unified and Isolated dynamic namespace maintained by centralized servers

> Layered and enriched metadata, I/O hints as high level

metadata

#### □ I/O API

- > POSIX
- > MPI-IO
- Extended API, layout and policy guide
- HDF5 over POSIX and extended API





## **Scalable Application**

National University of Defense Technology







## **Application Case -- CFD**



#### Hybrid RANS/LES simulation of scramjet combustion

- CPU+MIC version is 8.63X to 13.86X faster than the original CPU version
- ➤ The largest scramjet combustion simulation up to now: totally 998,400 cores on 26,880 million cells, parallel efficiency 79%.













Large transport aircraft

☐ Large passenger aircraft







## **Application Case – Bio-Medicine**



- High Throughput Virtual Screening
- Applications: Computer Aided Drug Design, Molecular Docking, and Virtual screening
- □ mD³DOCKxb, Lamarckian Genetic Algorithm
- □ Data Scale, 40 millions molecules, 800TB
- Bottleneck, IO BW, Comm BW



## **Application Case – Bio-Medicine**



Against Ebora virus
 40 millions real
 drug molecules
 docking in 20hours
 ON TH-2





## **Other Applications**



#### Other Applications









## **Cloud Computing & Bigdata**



#### Additional Applications

- > E-Gov
- > micMR
- > RenderCloud
- > Health care
- ➤ Smart city
- Video Processing
- > Education
- ➤ Social Network Analysis













## **Application scale in next 5 years**



| Applications                                                  | Current Scale in China                                    | Scale in next 5 years                 |
|---------------------------------------------------------------|-----------------------------------------------------------|---------------------------------------|
| Seismic Exploration                                           | 2600km², 5km depth<br>217900 shots<br>2.2TB data          | Millions of shots                     |
| Genomics Research                                             | 2PB bioinformatics data                                   | 100PB bio data                        |
| New Energy<br>(Magnetic Confinement Fusion)                   | 2 billion ions<br>0.83 billion electrons                  | 100 billion electrons                 |
| Drug Design                                                   | 200-300ns Molecular<br>Dynamics simulations               | 10 Million<br>molecular<br>1000ns/day |
| CFD<br>(Aircraft Design)                                      | 3.5 billion mesh points                                   | 100 billion mesh points               |
| Universal Evolution (neutrinos)                               | 110 billion particles                                     | Trillion particles                    |
| Smart City (Urban Electromagnetic Spectrum Monitoring System) | Area (Guangzhou city):<br>200km²<br>Grid size:1.0km*1.0km | Grid Size:<br>100m*100m               |





## **Status of Tianhe System**



| System               | Tianhe-1A                  | Tianhe-2                            | Tianhe-2A                              |
|----------------------|----------------------------|-------------------------------------|----------------------------------------|
| System Peak(PF)      | 4.7                        | 54.9                                | ~100                                   |
| Peak Power(MW)       | 4.04                       | 17.8                                | ~18                                    |
| Total System Memory  | 262 TB                     | 1.4 PB                              | ~3PB                                   |
| Node Performance(TF) | 0.655                      | 3.431                               | ~6                                     |
| Node processors      | Xeon X5670<br>Nvidia M2050 | Xeon E5 2692<br>Xeon Phi            | Xeon or China CPU<br>China Accelerator |
| System size(nodes)   | 7,168 nodes                | 16,000 nodes                        | ~18,000                                |
| System Interconnect  | TH Express-1               | TH Express-2                        | TH Express-2+                          |
| File System          | 2 PB<br>Lustre             | 12.4PB H <sup>2</sup> FS<br>+Lustre | ~30PB<br>H²FS+TDM                      |







#### Matrix2000 GPDSP

- ☐ High Performance
  - 64bit Supported
  - > ~2.4/4.8TFlops(DP/SP)
  - > 1GHz, ~200W

- High Throughput
  - > High-bandwidth Memory
  - > 32~64GB
  - ➤ PCIE 3.0, 16x







#### □ Software stack

- ➤ OpenMP4.0
- > OS, Compiler and Math Library on GPDSP
- ➤ GPDSP Driver, Communication Library







## **HPC & Bigdata convergence Stack**



#### ☐ Starlight Software Stack







## **Co-design Eco-system**





- □ Heterogeneous Architecture
- Adaptive system and software design
- ☐ HPC & Bigdata Convergence
- □Supercomputing Eco-system



























## **Thanks**





