Russian Supercomputing Days 2015

Advances in HPX Runtime Implementation and Application a work in progress

Thomas Sterling Professor, Informatics and Computing Chief Scientist, CREST School of Informatics and Computing Indiana University

September 29, 2015

Introduction

- Investigating Critical Challenges to Future Computing
 - SLOW: starvation, latency, overhead, contention
 - Asynchrony and uncertainty of physically distributed computing
 - Classes of application/algorithms dynamic in form and function
 - Performance portability and generality
- Exploring Dynamic Adaptive Computation
 - Exploiting opportunity of system/app runtime information
 - Control of resource management
 - Employ DAG/Dataflow dependency representation and control
 - Message-driven for latency effects reduction
 - Variable granularity asynchronous tasking for more parallelism
 - Global address space
- Experimentation with HPX-5 Runtime System
 - Based on experimental ParalleX execution model abstraction
 - Work in progress
 - Demonstration of early application results good but limited

Semantic Components of ParalleX

CREST

HPX-5 Runtime Software Architecture

Courtesy of Jayashree Candadaí, IU

HPX-5 1.1 SMP Performance

• Parallel Fibonacci—spawning tasks in parallel

Microbenchmarks

 Parallel task spawn benchmark results using 10,000,000 nop tasks

 Sequential task spawn benchmark results using 10,000,000 nop tasks

Communication Performance

 "get" message latency for messages comparing the performance of MPI, Charm++ and UPC communication to PWC and ISIR implementations of HPX-5 transport layer

Communication Performance

 "put" message latency for messages comparing the performance of MPI, Charm++ and UPC communication to PWC and ISIR implementations of HPX-5 transport layer

Wavelet Adaptive Multiresoultion

user: manderson Mon Jun 22 14:10:19 2015

ψ

On-node efficiency

Courtesy of Matt AndersonIU

Wavelet blast wave strong scaling

From in vivo to in silico neuroscience

(source: Christof Koch and Idan Segev, Methods in Neuronal Modeling: From Ions to Networks)

A Hodgkin-Huxley simulation of 3.1M neurons. (represented as points for simplicity)

mouse brain: 80M neurons; human brain: 89B neurons

Neural/Brain Simulation Testing results

single node execution time for one simulation time step*

input data: 537 biologically inspired cells from layer 5

• 128 GB RAM; Cache 20480 KB;

CRESI

	Execution time (milisecs)
hpx	310.69
OpenMP	504.78
posix	638.23
serial	4,040.36
ideal (theoretical)	252.52

(* HPX 1.2, preliminary results)

Bruno Magalhaes @ EPFL

Kelvin-Helmholtz Instability

Courtesy of Matt AndersonIU

LULESH HPX-5 version 1.20 Performance

Courtesy of Matt AndersonIU

Conclusion: HPX-5 v2.0 (November 2015) SC15

- ParalleX processes 1.0
- Complexes as First-class threads
- Local Control Objects Dataflow LCO
- Simple parcel continuation
- APEX integration
- Xeon-Phi support + optimization
- Efficient collectives
- Kitten LXK OS
- Regression tests
- Documentation, tutorials

16 Courtesy of Jayashree Candadaí

Conclusions

- Building useable complex software is hard
 - Deployable succeeded
 - Robust succeeded
 - Scalable medium success
- Efficiency is achieved through appreciation of details
 - Not good enough
- Parallel algorithms are a constraining factor
 - We are lucky to do equal to conventional practices with typical algorithms
- We thought we were building a better system
- But we were actually building a better interface to a narrow class of applications/algorithms, principally dynamic requiring adaptive operation
- Next steps:
 - Performance Modeling for accurate boundary condition estimates
 - Identify and quantify opportunities for future architecture enhancements
 - Ultimate research result: Positive or Negative (jury is still out)

17